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The author makes no claim of expertise in this subject area. Indeed he has none. The artifacts found
here were developed after being introduced to Apollonius’ Conics in a quest to answer the question,
”What is a parabola?” Except for Ty’s occasional reminders that ”it’s a journey not a destination”

the quest likely would have been abandoned early on. Learning is a never ending journey though and
there is no fear that these artifacts will reveal the story’s ending prematurely. It is hoped, however,

that they will be of some worth to a reader choosing to travel this way.

A youth who had begun to read geometry with Euclid, when he had learnt the first proposition,
inquired, ”What do I get by learning these things?” So Euclid called a slave and said ”Give him

three pence, since he must make a gain out of what he learns.”
Stobaeus, Extracts

”If Euclid failed to kindle your youthful enthusiasm, then you were not born to be a scientific
thinker.”

Albert Einstein

“Modern writers employ fractions instead of ratios, and with great advantage. But the student who
leaves untouched that consideration of ratio which includes incommensurables as well as

commensurables will never be more than a mathematician to a certain number of decimal places.”
Penny Cyclopaedia of the Society for the Diffusion of Useful Knowledge, 1821 edition.



Introduction
In Euclid’s1era geometers constructed cones by rotating a right triangle about one of it’s perpendicular
sides. The side became the axis of the cone positioning the apex over the center of the circular base.
Conic sections came from cutting the cone with a plane that was perpendicular to a side of the cone.
They were characterized as being a section of an acute, right, or obtuse cone as the apex angle of the
cone was acute, right or obtuse. In today’s parlance these cones are right circular cones.
Rather than starting from a triangle, Apollonius2began construction of a cone with a circle and a
point not on the plane of the circle. From the point he drew a line to the circle, extended it infinitely
in both directions, and then rotated the line about the circle to form a conic surface. He called the
point the apex, the circle the base, and the portion of the conic surface between them the cone. The
line from the apex to the center of the base he defined to be the cone axis. The only restriction placed
on the cutting plane was that it intersect the base plane in a line that is perpendicular to a diameter
of the base. These cones are characterized today as oblique circular cones.
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Figure 1: Oblique Cone Symmedians

The names ”right circular” and ”’oblique circular” imply a similarity between the cones that does
does not exist. They are similar in that circular sections are created when either cone is cut by planes
parallel to their base and an Euclid cone is the result when an Apollonian cone is created with the
apex point positioned over the center of the base circle. Beyond that, however, an Apollonian cone
has an elliptical cross section and, except in that one instance, the similarities are special instances
in Apollonius’ generalization. It is interesting to note that some sixteen centuries latter Desargues
describes Apollonius’ work as being special cases of his more general projective geometry extensions.
Two aspects of Apollonius’ extension that are seldom encountered in today’s Cartesian based geom-
etry are non-orthogonal conjugate diameters and anti-parallels. Both involve concepts more likely to
be encountered in framing construction and air handling duct work than in modern presentations of
mathematics.
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The most readily identifiable and quantifiable parameters describing an intersection of a plane with
an oblique cone are conjugate diameters rather than the axes commonly used when working with right
cones. This difference was the primary reason for undertaking this study.
The cone axis passes through the center of the base and the circular sections parallel to it. In a right
cone the cone axis is co-linear with the symmetry axis and the base circle reflects onto itself. This is
not the case in an oblique cone. The oblique cone axis does not lie along the symmetry axis which
bi-sects the apex angle of the cone. Consequential the circles parallel to the base are reflected into
another set of circles, called the anti-parallels, whose centers lie on the symmedian to the cone axis.
Figure 1 shows the relationship between these axes, the infinite elliptical conic surface which has a
rotational symmetry of two and the Apollonian oblique cone. The constructor lines of the cone con-
nect in pairs to opposite ends of base diameters forming axial triangles. The cone axis is the line of
intersection of these planes and hence it lies in the planes of all axial triangles. On the other hand
the symmetry axis and the symmedians all lie together in the plane of the triangle formed from the
shortest and longest constructors. This is the only axial triangle that is always perpendicular to the
base.
Prior to this study we had worked through some propositions in Apollonius’ treatise on Conics using
graphical constructions. It was not even close to being a compass and straight edge approach, but
ratios were treated as ratios and evaluated via a graphical construction rather than treating ratios
as fractions and evaluating them numerically. On the other hand a protractor was used to erect
perpendiculars and a ruler might be used to find the mid point of a line. Both tasks that are easily
accomplished using a compass but get messy when the drawing program being used only draws filled
circles.
The propositions of interest were those that dealt with creating an elliptical section having non or-
thogonal conjugate diameters in an oblique cone and then recreating it in a right cone. Specifically
propositions I.13, 1.56 - 58, and VI.30 of the Conics. In this study some mathematical models of the
geometric constructions used in the earlier study are developed.
Supplemental Example Workbooks
If the workbook files are kept in the same directory as the main.pdf file a workbooks can, in many
instances, be opened by simply clicking the file reference. If that doesn’t work for you the workbooks
can be opened directly in MS Excel c© using the workbook name. Recent versions of Libre Officel c©
and Symphonyl c© also seem to work but the scale and colors of plots are more apt to need fine tuning.
These spreadsheet workbooks are based on equations derived in this report and were developed to
verify and further our understanding of cone/plane intersections. They are included in the hope that
they may have some educational worth to others interested in Apollonius’ conics.. No warranty of any
type nor fitness of use for any purpose is expressed or implied. Use at your own risk.
Professionally written software that uses Apollonius’ method to design patterns for sheet metal work-
ers is available in the Conet program found at: http://www.tyharness.co.uk/cones/conemath.htm.
Educators interested in an educational version of the program should contact Ty through the email
address on the web site.

BasicConicCalculations Demo
deWitt Demo
AxesTaylorP299 Demo

AxesPGeo49 Demo
ComboNoMacro Demo
AxesMacroCompatMode Demo

1In Book XI of Euclid’s Elements, http://aleph0.clarku.edu/˜djoyce/java/elements/bookXI/bookXI.html, a cone
of Euclid’s day is described thusly.
Def. 18. When a right triangle with one side of those about the right angle remains fixed is carried round and
restored again to the same position from which it began to be moved, the figure so comprehended is a cone. And,
if the straight line which remains fixed equals the remaining side about the right angle which is carried round, the
cone will be right-angled; if less, obtuse-angled; and if greater, acute-angled.
Def. 19. The axis of the cone is the straight line which remains fixed and about which the triangle is turned.
Def. 20. And the base is the circle described by the straight line which is carried round.

2T. L. Heath’s Treatise on Conic Sections is available from http://www.wilbourhall.org/pdfs/Treatise_on_Conic_
Sections.pdf
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Calculating Effective Angles

A

B

C

K

ecpa

ecpa

d'

O

A'C'

cpa

ata

OA

OA

d

axial	triangle

Cone	Base
cutt

ing	
plan

e

tang
ent

Figure 2: Cone and Plane Intersection

The conic sections created by intersecting a cone with a plane lie on the cutting plane. One diameter
of the cone base will be perpendicular to the line of intersection between the cutting plane and the
base plane. Lines from the cone apex to opposite ends of this diameter form the axial triangle. In
Apollonius’ terms, the principal diameter of the section, dd′, lies along the line of intersection
between the cutting plane and the imaginary axial triangle plane. In a right circular cone it will be
the longest diameter but in an oblique cone it will only be the longest when the cone is orientated
such that the axial triangle is perpendicular to the base or the section is a circle.
The tangents to the section at the ends of the principal axis are parallel to the line of intersection
between the cutting and base planes. The mid-point of the principal diameter is at the center of the
section. It passes through the mid-points of all the chords that are parallel to the these tangents
which are collectively known as ordinates. The ordinate passing through the center of the section
will thus also be a diameter and is called the conjugate diameter. The two diameters form a
conjugate pair and the angle between them is the ordinate angle.
In a right circular cone the principal and conjugate diameters will be perpendicular but in an oblique
cone the ordinate angle, OA, will be right only when the section is a circle or the axial triangle is
perpendicular to the base plane. In all other instances the ordinate angle varies with the slope of
both the cutting plane and axial triangle.
Construction workers encounter the same phenomena when framing roofs where two roofs intersect
and the rafters for ”hips” and ”valleys” must be cut at compound angles to fit properly. It may also
be encountered by a home owner installing molding with mitered joints or by a hobbyist
constructing mitered wooden boxes. This on-line Compound Joint Angle Calculator Click Here or,
from http://www.pdxtex.com/canoe/compound.htm, discusses the problem and can be used to
calculate the angles involved for simple joinery.

Definitions of symbols used in Figure 2.
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BC - axial triangle base
AK - line through A parallel to the principal diameter of the conic and intersecting the extension of
BC at K.
ata - axial triangle angle - slope of the axial triangle plane
cpa - cutting plane angle - slope of cutting plane
ecpa - effective cutting plane angle - slope of cutting plane
OA - ordinate angle - angle between principal diameter and ordinates

The ordinates are always parallel to line of intersection between the cutting and base planes.
However, OA is only valid on the inclined cutting plane. It would not, for instance, correctly indicate
the projection of the principal diameter direction onto the base plane.

CC ′ = BC ′/SIN(cpa)
OC ′ = BC ′/TAN(ata)

TAN(OA) = CC ′/OC ′ = TAN(ata)/SIN(cpa)
OA = ATAN(TAN(OA)) = ATAN(TAN(ata) / SIN(cpa)) (1)

CA′ = BC ′/SIN(ata)
OA′ = BC ′/TAN(cpa)

TAN(ecpa) = OA′/OC ′ = TAN(cpa)/SIN(ata)
ecpa = ATAN(TAN(ecpa))=ATAN(TAN(cpa) / SIN(ata)) (2)

Calculating Section Characteristics

Figure 3: Cone Geometry

With the exception of the angle of the ordinates, Apollonius was able to uniquely characterize conic
sections with a parameter p that could be constructed using four lines that all lie in the same plane.
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How the physical properties of the cone affected these lines was not considered. Whereas, in this
study, that is the primary interest. Figure 3 identifies the cone/cutting plane components of interest
and we begin here to establish their relationship to the chateristics of the cone sections.

Explanation of symbols used in Figure 3.

Physical Properties:

br - cone base radius
h - cone height - perpendicular distance from base plane to cone apex
Apex - offset from center of base to the projection of the apex onto the base plane measured along an
extension of the base of the perpendicular axial triangle.
rotation - rotation of cone about the base center measured CCW from its position when the cone and
x axis are aligned.
CM - distance from cone base to intersection of axial triangle base extension with extension of section
principal diameter.
sca - Section Center Altitude
These two are discussed in a following section.
ecpa - effective cutting plane angle
OA - ordinate angle

Calculated values:

x = Apex ∗ COS(rotation) − projection of apex offset onto x axis
y = ABS(Apex ∗ SIN(rotation)) − projection of apex offset onto y axis

ata = IF (y = 0, 90, ATAN(h/y)) − slant angle of axial triangle plane

ash = h

SIN(ata) −slant height of axial triangle

AK = ash

SIN(ecpa) − Apollonius variable

BK = ash

TAN(ecpa) + br + x − Apollonius variable

CK = BK − 2 ∗ br −Apolloniusvariable

Calculating Conic Section Altitude and Diameter
The diameter of the conic section, dd’, is dependent upon the characteristics of the cone and the
altitude and angle at which it is intersected by the cutting plane. Apollonius showed that the char-
acteristics of a cone with base diameter BC are captured in the the three lengths, AK, BK and CK

where AK is drawn parallel to the cutting plane. He used the quotient AK2

BK ∗ CK
and the diameter

dd’ to characterize sections. The three lengths will be used here to derive formula for the diameter and
section altitude using the distance from the cone base to the line of intersection between the cutting
plane and the cone base plane, CM.
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Derivation of diameter dd’ when CM is known:

(dd′ + dM) : AK :: (BC + CM) : BK (3)

dd′ + dM = AK(BC + CM)
BK

(4)

dd′ = AK(BC + CM)
BK − dm

(5)

dM : CM :: AK : CK (6)

dM = CM ∗ AK

CK
(7)

dd′ = AK(BC + CM)
BK

− CM ∗ AK

CK
(8)

dd′ = AK(BC ∗ CK + CM(CK − BK))
BK ∗ CK

(9)

dd′ = AK(CK − CM)(BK − CK)
BK ∗ CK

(10)

dd′ = AK ∗ BC ∗ (CK − CM)
BK ∗ CK

(11)

The axis of an oblique cone connects the Apex to the center of the base and passes through the center
of all sections parallel to the base. However, the line HA passes through the mid-point of the diameter
of the section shown but does not pass through the center of the base.
Derivation of the section altitude h’ when CM and dd’ are known:

h′ : h :: Ho : HA = (dM + dd′/2) : AK = (2dM + dd′)/2 : AK (12)

h′ = h

2AK
(2dM + dd′) (13)

h′ = h

2AK
(2CM ∗ AK

CK
+ dd′) (14)

h′ = h(CM

CK
+ dd′

2AK
) (15)
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Starting from equation 11 an equation can be derived for h’ when dd’ is not known:

h′ = h

2AK
(CM ∗ AK

CK
+ AK(BC + CM))

BK
(16)

h′ = h ∗ AK(CM(BK + CK) + BC ∗ CK)
2AK ∗ CK ∗ BK

(17)

h′ = h(CM(BK + CK) + BC ∗ CK)
2BK ∗ CK

(18)

Finally, if h’ is given, equation 16 can be re-factored to calculate CM which in turn can be used in
equation 9 to calculate dd’.

CM = 2h′(CK ∗ BK) − h ∗ BC ∗ CK)
h(BK + CK) (19)

Drawing an Ellipse from Conjugate Diameters
A method for drawing ellipse using the the conjugate diameters is shown in Jan de Witt’s Elementa
Curvarum Linearum, Liber Primus translated by A. W. Grootendorst and published by Springer. It
can be used to draw ellipse when the diameters are orthogonal but being orthogonal is not a necessary
condition. It can be used to draw sections using conjugate diameter pairs from the preceding calcula-
tions. De Witt’s procedure is described thusly:
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Figure 2.26

The lengths of a pair of conjugate diameters and the angle between them are required for this
construction. The general procedure is to create the angle AMB from the supplied data and then
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tabulate the coordinates of S′ as the angle is stepped around the center. The coordinates are calculated
by finding the intersection of l′ and m′.
The derivations of the needed equations are based on Figure 5 which shows the setup and drawing
parameters. R, one side of the angle AMB, is the projection of MS onto the perpendicular to the
ordinates AM. The other side of the angle, r, is constructed by marking off CM on the extension of
AM (G) and then projecting it onto m at B. I chose to position the conjugate diameter horizontally
and make the y axis lie along the principal diameter. The x axis is perpendicular to it. Using these
axes, the equations of the lines intersecting lines that define the points of the curve are:

line m′

x = k = r ∗ SIN(theta + alpha)
line l′

y = a ∗ x + b

The parameters a and b can be determined by evaluating l′ at A′.
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Figure 5: de Witt Set Up and Operation

b = y − a ∗ x = R ∗ COS(theta) − a ∗ R ∗ SIN(theta)
then at x = 0, y = b = COS(theta) + R ∗ SIN(theta)TAN(gamma) = R ∗ COS(theta) − a ∗ R ∗
SIN(theta)
From which a = −TAN(gamma).
Hence the equations for the (x,y) coordinates of the point in the curve are:

x = r ∗ SIN(theta + alpha)
y = a ∗ x + b

where

a = −TAN(gamma)
b = R ∗ COS(theta) − a ∗ R ∗ SIN(theta)

I wanted theta = 0 to always plot (0, y) so I added an offset which can be set to gamma to accomplish
this.
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Finding The Axes of a Section
Apollonius characterized conic sections by the principal diameter and a parameter based on the phys-
ical characteristics of the cone/cutting plane configuration that produced the section. He defined the
characteristics involved as PP ′ : PL :: sq.AK2 : Rect.BK, CK where PP ′ is the principal diameter
and PL is the parameter. The parameter is sometimes referred to as p. AK, BK, CK were defined
in an earlier part of this document. Frequently Apollonius attached the parameter perpendicular to
one end of the principal diameter. In other instances the diameter and parameter appeared as a right
triangle with sides PP ′ and PL. The equations developed earlier for calculating section diameters
also included an equation for calculating the p ratio BK ∗ CK

AK2 . The parameter p is the product of
this ratio and the principal diameter.
Proposition I.56 and VI.30 both describe construction of elliptical sections in a right cone and require
that the major axis of the section be known. I.58 is Apollonius’ method for finding the Major axis and
its associated p value when the principal diameter and not the axis of a given curve are known. In I.58
the principal diameter, the parameter p, and the ordinate angle are assumed to be given. Apollonius
does not reference the curve itself other than to say, after finding the major axis, that the curve can
be drawn using the method of I.56.
Finding The Major Axis Using Principal Diameter, Parameter and Ordinate Angle

The proof begins by describing how these are to
be laid out: a line of arbitrary length PT is drawn
at the ordinate angle to a line PP ′ representing
the principal diameter as shown in the figure at
the right.
After laying out the ”givens”, Apollonius’ propo-
sition I.58 continues with the construction of an
ordinate of a semi-circle that is done without
comment. In the translations of the Conics an
accompanying footnote references a method for
the construction that is attributed to Eutocius.
A presentation of Eutocius’ method that is much
clearer than those in the footnotes can be found
in Colin McKinney’s32010 University of Iowa
doctoral Thesis entitled ”Conjugate Diameters:
Apollonius of Perga and Eutocius of Ascalon.” The
diagrams and his discussion related to Book I,
Propositions 55 and 58 are particularly helpful.
Referring to the I.58 Setup figure, the construction
calls for a semicircle to be drawn on CP with cen-
ter at O and the line NH to be drawn parallel to
PT so that sq.NH : rect.PH, HC :: p : PP ′. We
present here a simple method of constructing NH
that Apollonius might have used and considered
to not need elaboration. Readers interested in
Eutocius’ method of construction are referred to
McKinney’s dissertation.

L′

p

2
T

L

i

i′

H

O

C

i∗

N

P ′

P

m

Apollonius’ I.58 Setup

PL is the parameter p. Extend the line CP by the length p

2 to the point L′. Erect a perpendicular
on CL′ at m, the midpoint of CL′, and extend it to intersect the extension of line TP at i. Draw the
line L′i. Copy the angle i∗ii′ to PON . Using a compass, from the point i, mark the length OP on iP
at i∗ and iL′ at i′. From P mark the length i∗i′ on the arc PC at N . With a drawing program it may
be easier to copy the angle using a protractor to draw the line ON . Draw a line through N parallel
to PT intersecting OP at H. NH is the required ordinate.
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Once the point N is determined the line CN can be drawn and extended to intersect the line TP
fixing the arbitrary point T . The major axis lies along CT .

Apollonius I.58 Construction of Major Axis

The length of the semi-axis is equal the mean proportional between CN and CT and can be con-
structed by drawing a semi-circle centered at C with a radius of CT and drawn to intersect at T ′ the
extension of TC through C. Construct a second semi-circle on NCT ′ centered at the mid-point of
NCT ′. Erect a perpendicular on NCT ′ at C and extend it to intersect the second semi-circle NT ′ at
x. Cx is the length of required semi-major axis and the major axis, AA′, can be marked off on TT ′

with a circle or radius Cx centered at C. AA′, shown in red, is the required major axis
A method that replaces the semi-circle on CP and the ordinate HN with a larger circle and parallel
lines to establish the directions of the axes and lengths of the semi-axes is shown in this third drawing.
The accompanying Spreadsheet implements a version of this method which is based on Problem 49
from Thomas Bradley’s41834 text Practical Geometry, Linear Perspective and Projection.

Apollonius I.58 Alternate
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In itself this method does not find the parameter for the axes. However, it is compatible with the I.58
construction which can be used to do so. When the section is taller than it is wide, p will be less than
the diameter. When it is wider than it is tall, p will be greater than the diameter and p will equal to
the diameters when the conjugate diameters are equal.
This occurs when the cutting plane is parallel to the base or parallel to the anti-parallels. It can,
however, also occur when the sections are not circles. In this latter case it indicates the cutting plane
is inclined at the angle at which a transition between tall and narrow and short and wide sections
occurs. Steeper angles will produce taller sections while lesser slopes will produce shorter sections.
This phenomena does not occur when the cone is a right circular cone. Thus before a short and fat
sections can be reconstructed in a right cone, Apollonius’ I.57 method must be used to transform it
to a tall and narrow orientation.

Using Conjugate Diameters and Ordinate Angle

One of the simplest methods we have found for finding axes is described in Charles Taylor’s5An Intro-
duction to the Ancient and Modern Geometry on Conics. Using a pair of conjugate diameters it finds
the lengths and direction of the axes. Taylor’s description of the method and example constructions
are shown on the drawings made by TY Harness and included here. The examples show the method
works both when CP > CD and CP < CD. It is easily adapted for use in a spreadsheet and equations
are derived and included for that purpose. Excel VBA code for implementing it as a Macro is given.
I am told the macro works in Lotus Symphony and Libre Office 3.5 when it is entered in Excel and
saved in Excel 2003 format.

Figure 6: Taylor’s Graphical Construction of Ellipse Axis when CP > CD
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Figure 7: Taylor’s Graphical Construction of Ellipse Axis when CP < CD

3Colin McKinney, doctoral Thesis Conjugate Diameters: Apollonius of Perga and Eutocius of Ascalon, University of
Iowa 2010. Available from: http://ir.uiowa.edu/cgi/viewcontent.cgi?article=1896&context=etd

4Thomas Bradley, Practical Geometry, Linear Perspective, and Projection, 1934. Can be read as an ebook from Google
Books at http://books.google.com/books/reader?id=FetJAAAAMAAJ&printsec=frontcover&output=reader&pg=
GBS.PR1, or, downloaded in several formats from http://archive.org/details/practicalgeomet00bradgoog

5The method is given as Exercise 299, page 125 in Charles Taylor’s 1881 text An introduction to the ancient and modern
geometry of conics, being a geometrical treatise on the conic sections with a collection of problems and historical notes
and prolegomena. The text is one of Cornell Universitiy’s preserved Historical Math Monographs and available at
http://ebooks.library.cornell.edu/cgi/t/text/text-idx?c=math;idno=00800001
Credit is given to the Oxford, Cambridge, and Dublin Messenger of Mathematics, vol. III, pp. 151, 227 (18866) in a
footnote. A copy of the pertinent page from that publication is included in this document.
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Figure 8: Taylor’s Method Equation Variable Diagram

theta = 90 − OA

x = CD ∗ COS(theta)
y = x ∗ TAN(theta)

phi = ATAN2(CD ∗ SIN(theta), (CP − x))
K ′D = SQRT (CP 2 ∗ CD2 − 2 ∗ CP ∗ CD ∗ COS(theta))
KD = SQRT (CP 2 ∗ CD2 − 2 ∗ CP ∗ CD ∗ COS(90 + OA))

MajorAxis = KD + KD′

MinorAxis + KD − KD′

tau = ATAN(y/(CP + x))
HalfAngle = (180 − (tau + phi))/2

MAA = 90 − tau − HalfAngle

The next page is a copy of the page in the Oxford, Dublin and Cambridge Messenger of Mathematics
referenced by Taylor and on which his Exercise 299 is based. Following that is the code for a macro
implementation of three functions for getting the lengths of the Major and Minor axes and the direc-
tion of the Major axis relative to the principal diameter based on Taylor’s method.
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Attribute VB_Name = "DiameterToAxis" 

' 8-19-2012 version 

'  corrected parameter order in myAnt2() was (y,x) now (x,y) 

' 

' Parameters 

'  CP   Principal semi-diameter 

'  CD   Conjugate semi-diameter 

'  OA   Ordinate Angle 

'  MAA  Major Axis Angle 

'  MajAxis   Major Axis 

'  ConjAxis  Conjugate Axis 

' Functions 

'  get_MajAxis(CP, CD, OA) 

'  get_ConjAxis(CP, CD, OA) 

'  get_MAA(CP, CD, OA) 

'  myAtn2(x,y) returns arc tangent (y/h) in range 0 to pi for postive y 

'  ArcTan2 is an alternate to myAtn2 

' 

Function get_MajAxis(CP As Double, CD As Double, OA As Double) As Double 

'  Get Major Axis length 

Dim MajAxis As Double 

Call do_the_math(CP, CD, OA, MajAxis) 

get_MajAxis = MajAxis 

End Function 

' 

Function get_ConjAxis(CP As Double, CD As Double, OA As Double) As Double 

'  Get Conjugate Axis length 

Dim ConjAxis As Double 

Call do_the_math(CP, CD, OA, , ConjAxis) 

get_ConjAxis = ConjAxis 

End Function 

' 

Function get_MAA(CP As Double, CD As Double, OA As Double) As Double 

'  Get Major Axis Angle relative to first parameter 

'     subtract return value from ordinate angle for relative to second. 

Dim MAA As Double 

Call do_the_math(CP, CD, OA, , , MAA) 

get_MAA = MAA 

End Function 

' 

Private Sub do_the_math(CP As Double, CD As Double, OA As Double, Optional _ 

    MajAxis As Double, Optional ConjAxis As Double, Optional MAA As Double) 

'  VBA uses ' to start a comment so I will append 

'  an _ instead  i.e., K_D for K'D 

' 

Dim theta, phi, tau As Double 

Dim X, Y, KD, K_D, arg As Double 

Dim halfAngle As Double 

With WorksheetFunction 

' use with as radians and degrees not VBA functions 

theta = .Radians(90 - OA) 

X = CD * Cos(theta) 

Y = X * Tan(theta) 

phi = .Degrees(myAtn2((CP - X), CD * Sin(theta))) 



'phi = .Degrees(ArcTan2((CP - X), CD * Sin(theta))) 

K_D = Sqr(CP ^ 2 + CD ^ 2 - 2 * CP * CD * Cos(theta)) 

KD = Sqr(CP ^ 2 + CD ^ 2 - 2 * CP * CD * Cos(.Radians(90 + OA))) 

MajAxis = KD + K_D 

ConjAxis = KD - K_D 

tau = .Degrees(Atn(Y / (CP + X))) 

halfAngle = (180 - (tau + phi)) / 2 

MAA = 90 - tau - halfAngle 

End With 

' 

End Sub 

' 

Function myAtn2(ByVal X As Double, ByVal Y As Double) As Double 

With WorksheetFunction 

    On Error GoTo DivideError 

    myAtn2 = Atn(Y / X) 

    If (X < 0) Then 

        If (Y < 0) Then myAtn2 = myAtn2 - .PI Else myAtn2 = myAtn2 + .PI 

    End If 

    Exit Function 

DivideError: 

    If Abs(Y) > Abs(X) Then   'Must be an overflow 

        If Y > 0 Then myAtn2 = .PI / 2 Else myAtn2 = -.PI / 2 

    Else 

        myAtn2 = 0   'Must be an underflow 

    End If 

    Resume Next 

End With 

End Function 

' 

Function ArcTan2(X As Double, Y As Double) As Double 

Const PI As Double = 3.14159265358979 

Const PI_2 As Double = 1.5707963267949 

    Select Case X 

        Case Is > 0 

            ArcTan2 = Atn(Y / X) 

        Case Is < 0 

            ArcTan2 = Atn(Y / X) + PI * Sgn(Y) 

            If Y = 0 Then ArcTan2 = ArcTan2 + PI 

        Case Is = 0 

            ArcTan2 = PI_2 * Sgn(Y) 

    End Select 

End Function 


